Intramolecular interaction of SUR2 subtypes for intracellular ADP-Induced differential control of K(ATP) channels.
نویسندگان
چکیده
ATP-sensitive K+ (K(ATP)) channels are composed of sulfonylurea receptors (SURs) and inwardly rectifying Kir6.2-channels. The C-terminal 42 amino acid residues (C42) of SURs are responsible for ADP-induced differential activation of K(ATP) channels in SUR-subtypes. By examining ADP-effect on K(ATP) channels containing various chimeras of SUR2A and SUR2B, we identified a segment of 7 residues at central portion of C42 critical for this phenomenon. A 3-D structure model of the region containing the second nucleotide-binding domain (NBD2) of SUR and C42 was developed based on the structure of HisP, a nucleotide-binding protein forming the bacterial Histidine transporter complex. In the model, the polar and charged residues in the critical segment located within a distance that allows their electrostatic interaction with Arg1344 at the Walker-A loop of NBD2. Therefore, the interaction might be involved in the control of ADP-induced differential activation of SUR2-subtype K(ATP) channels.
منابع مشابه
Interaction of the sulfonylthiourea HMR 1833 with sulfonylurea receptors and recombinant ATP-sensitive K(+) channels: comparison with glibenclamide.
The novel sulfonylthiourea 1-[[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl]-3-methylthiourea (HMR 1883), a blocker of ATP-sensitive K(+) channels (K(ATP) channels), has potential against ischemia-induced arrhythmias. Here, the interaction of HMR 1883 with sulfonylurea receptor (SUR) subtypes and recombinant K(ATP) channels is compared with that of the standard sulfonylurea, glibe...
متن کاملImpaired exercise tolerance and skeletal muscle myopathy in sulfonylurea receptor-2 mutant mice.
By sensing intracellular energy levels, ATP-sensitive potassium (K(ATP)) channels help regulate vascular tone, glucose metabolism, and cardioprotection. SUR2 mutant mice lack full-length K(ATP) channels in striated and smooth muscle and display a complex phenotype of hypertension and coronary vasospasm. SUR2 mutant mice also display baseline cardioprotection and can withstand acute sympathetic ...
متن کاملEndosomal KATP channels as a reservoir after myocardial ischemia: a role for SUR2 subunits.
ATP-sensitive K(+) (K(ATP)) channels, composed of inward rectifier K(+) (Kir)6.x and sulfonylurea receptor (SUR)x subunits, are expressed on cellular plasma membranes. We demonstrate an essential role for SUR2 subunits in trafficking K(ATP) channels to an intracellular vesicular compartment. Transfection of Kir6.x/SUR2 subunits into a variety of cell lines (including h9c2 cardiac cells and huma...
متن کاملEpisodic coronary artery vasospasm and hypertension develop in the absence of Sur2 K(ATP) channels.
K(ATP) channels couple the intracellular energy state to membrane excitability and regulate a wide array of biologic activities. K(ATP) channels contain a pore-forming inwardly rectifying potassium channel and a sulfonylurea receptor regulatory subunit (SUR1 or SUR2). To clarify the role of K(ATP) channels in vascular smooth muscle, we studied Sur2 gene-targeted mice (Sur2(-/-)) and found signi...
متن کاملVasodilation induced by oxygen/glucose deprivation is attenuated in cerebral arteries of SUR2 null mice.
Physiological functions of arterial smooth muscle cell ATP-sensitive K(+) (K(ATP)) channels, which are composed of inwardly rectifying K(+) channel 6.1 and sulfonylurea receptor (SUR)-2 subunits, during metabolic inhibition are unresolved. In the present study, we used a genetic model to investigate the physiological functions of SUR2-containing K(ATP) channels in mediating vasodilation to hypo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 90 5 شماره
صفحات -
تاریخ انتشار 2002